Improved Language Modeling for Statistical Machine Translation

نویسندگان

  • Katrin Kirchhoff
  • Mei Yang
چکیده

Statistical machine translation systems use a combination of one or more translation models and a language model. While there is a significant body of research addressing the improvement of translation models, the problem of optimizing language models for a specific translation task has not received much attention. Typically, standard word trigram models are used as an out-of-the-box component in a statistical machine translation system. In this paper we apply language modeling techniques that have proved beneficial in automatic speech recognition to the ACL05 machine translation shared data task and demonstrate improvements over a baseline system with a standard language model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new model for persian multi-part words edition based on statistical machine translation

Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

A WFST-based log-linear framework for speaking-style transformation

●Objective: Transform spoken-style language (V) into written style language (W) for the creation of transcripts ●Approach: Statistical machine translation to “translate” from verbatim text to written text ●Innovations: ●Log-linear modeling for improved accuracy ●Introduction of features to handle common phenomena in speaking-style transformation ●WFST-based implementation for integration with W...

متن کامل

Improved Language Modeling for English-Persian Statistical Machine Translation

As interaction between speakers of different languages continues to increase, the everpresent problem of language barriers must be overcome. For the same reason, automatic language translation (Machine Translation) has become an attractive area of research and development. Statistical Machine Translation (SMT) has been used for translation between many language pairs, the results of which have ...

متن کامل

Joint Morphological-Lexical Language Modeling for Machine Translation

We present a joint morphological-lexical language model (JMLLM) for use in statistical machine translation (SMT) of language pairs where one or both of the languages are morphologically rich. The proposed JMLLM takes advantage of the rich morphology to reduce the Out-Of-Vocabulary (OOV) rate, while keeping the predictive power of the whole words. It also allows incorporation of additional avail...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005